Entradas

Mostrando entradas de noviembre, 2021

Sesión 342 (No bloqueadores en hiperespacios de continuos)

Noviembre 22 de 2021 (SESIÓN 342) No bloqueadores en hiperespacios de continuos Un continuo es un espacio métrico compacto y conexo diferente del vacío. Dado un continuo X, 2^X denota la colección de todos los cerrados no vacíos de X. El conjunto 2^X dotado con la métrica de Hausdorff es un continuo. Dados dos puntos A y B de 2^X diremos que B no bloquea a A si A∩B = ∅ y la unión de todos los subcontinuos de X que intersecan a A y están contenidas en X \ B es densa en X. Dado H ⊆ 2^X , consideramos los siguientes conjuntos:  B(H) = {B ∈ 2^X : B bloquea a cada elemento de H}  NB(H) = {N ∈ 2^X \ {X} : si A ∈ H y A ∩ N = ∅ , entonces N no bloquea a A}.  Naturalmente tanto B(H) como NB(H) los podemos dotar con la métrica de Hausdorff, como subespacios de 2^X.  Una pregunta particular que ha surgido durante el estudio de estos conjuntos es la siguiente: ¿Cuáles continuos cumple que NB(F1(X)) sea un continuo? En esta presentación mostraremos ejemplos y propiedades de estos...

Sesión 341 (Conjuntos omega límite en continuos de tipo $\lambda$)

Noviembre 8 de 2021 (SESIÓN 341) Conjuntos omega límite en continuos de tipo $\lambda$  Dados un espacio métrico compacto y $f\colon X \to X$ una función continua definida sobre $X$, es común llamar sistema dinámico discreto al par $(X,f)$. Para un punto $x\in X$, se definen sus conjuntos omega límite como \begin{eqnarray*} \omega(x,f) &=&\{y \in X : y \text{ es punto l\'imite de la sucesi\'on } (f^n(x))_{n\in \mathbb{N}}\}\\ \Omega (x,f)&=&\{y \in X : \exists(x_i)_{i\in \mathbb{N}}\text{ y } (n_i)_{i\in \mathbb{N}} \text{ con }x_i\to x \text{ y } f^{n_i}(x_i) \to y\}. \end{eqnarray*} Además, un continuo $X$ es llamado continuo de tipo $\lambda$ si es irreducible y todo subcontinuo indescomponible tiene interior vacío. En esta presentación iniciaremos viendo algunos ejemplos de continuos de tipo $\lambda$ y luego pasaremos a estudiar algunas propiedades de los conjuntos omega límite en esta clase de continuos, involucrando otros conceptos de sistemas diná...