Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 337 (Imágenes continuas y niveles de Whitney)

Septiembre 27 de 2021 (SESIÓN 337)

Imágenes continuas y niveles de Whitney

 

Un continuo es un espacio métrico, compacto, conexo y no degenerado. Diremos que una propiedad topológica es una propiedad de Whitney cuando se cumple que cada continuo que tiene tal propiedad tiene niveles de Whitney con esa misma propiedad topológica. En esta plática mostraremos que ser imagen continua de algunos continuos es una propiedad de Whitney y que existe un continuo para el cual ser su imagen continua no es una propiedad de Whitney. 

 

Expositor: David Maya (Universidad Autónoma del Estado de México)


En YouTube: https://youtu.be/aEvRArJdKoc

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)