Septiembre 12 de 2022 (Sesión 355)
Funciones inducidas entre hiperespacios de sucesiones convergentes
Una sucesión convergente no trivial S en X es un conjunto infinito numerable tal que existe un punto x en S, donde S-U es finito, para cada abierto U que contiene a x. En este caso, diremos que S converge a x y escribiremos lim S =x.
Dado un continuo X (espacio métrico compacto y conexo diferente del vacío), Sc(X) denota la colección de todas las sucesiones convergentes no triviales en X. El conjunto Sc(X) se dotará con la métrica de Hausdorff. Por otra parte, dada un función continua definida entre continuos f : X → Y, se introduce la función inducida Sc(f) definida entre los hiperespacios Sc(X) y S_c(Y) por Sc(f)(S)=f(S).
Bajo la condición de ser una función abierta, semiabierta, casi abierta, monótona, y otras más clases de funciones, mostraremos algunas relaciones entre f y Sc(f).
Expositor: Alvaro Andrade
Comentarios
Publicar un comentario