Marzo 13 de 2023 (Sesión 368) H(Q) no tiene topología de grupo polaco. Sea A un álgebra de conjuntos y Aut(A) el grupo de automorfismos de A. Note que Aut(A) es subconjunto de A^A y Aut(A) puede dotarse de la topología de subespacio que resulta de poner en A^A la topología producto (viendo a A como un espacio discreto). En el artículo “On the non-existence of certain group topologies” de Christian Rosendal publicado en 2005, se muestra que si G es un subgrupo de Aut(A) y se pone en G una topología que lo hace grupo topológico Hausdorff y Baire y, se cumplen otras hipótesis adicionales, dicha topología sobre G debe extender a la topología producto en AA . Considerando A=CO(Q) (el conjunto de todos los clopen del espacio de racionales Q) y G=H(Q) (el grupo de homeomorfismos de Q en Q), en el artículo se muestra también que H(Q) no tiene topología de grupo polaco, pues si existiese una topología con esas características, debería extender a la topología producto y esto origina un...