Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 396 (Extensiones de espacios CTS)

Febrero 19 de 2024 (Sesión 396)

Extensiones de espacios CTS

En una sesión anterior, se estudió a los espacios CTS, es decir, espacios que son compactos, T1 y segundo numerables. Se mostraron resultados acerca de las extensiones polacas de estos espacios CTS. En especifico, que todo espacio CTS admite una extensión polaca que preserva Borelianos. En esta charla mostraremos que no siempre se puede obtener una extensión Hausdorff y compacta de los espacios CTS. Asimismo, que no siempre se puede conseguir una extensión Hausdorff y σ-compacta con los mismos conjuntos de Borel. 

[1] M. Morayne, C. Ryll-Nardzewski. (1994). Refinements of T1, compact and second countable topologies, Topology and its Applications. 56 159–164. https://doi.org/10.1016/0166-8641(94)90016-7 

[2] M. Morayne, Ralowski, R. (2023). The Baire theorem, an analogue of the Banach fixed point theorem and attractors in T1 compact spaces. Bulletin Des Sciences Mathématiques, 183. https://doi.org/10.1016/j.bulsci.2023.1032311 

Expositor: Jeison Leonardo Amorocho Morales
Universidad Industrial de Santander
Escuela de Matemáticas.

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)