Marzo 4 de 2024 (Sesión 398)
La propiedad de Baire y los ultrafiltros
Un subconjunto de un espacio topologico tiene la propiedad de Baire si su diferencia simétrica con un abierto es magra. En los espacios polacos, todos los borelianos tienen esa propiedad. La demostración de que existen conjuntos sin la propiedad de Baire depende del axioma de elección.
Presentaremos algunos resultados sobre la propiedad de Baire en el espacio de Cantor, en particular, un teorema de Talagrand que afirma que los ultrafiltros no principales no tienen la propiedad de Baire. Estos resultados están relacionados con trabajos recientes sobre el espacio de Banach de las sucesiones I- convergentes a cero, donde I es un ideal.
Expositor: Carlos Uzcátegui
Universidad Industrial de Santander
Escuela de Matemáticas.
Comentarios
Publicar un comentario