Sesión 415 (Multiplicidad de soluciones a ecuaciones Paneitz-Branson)
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Septiembre 23 de 2024 (Sesión 415)
Multiplicidad de soluciones a ecuaciones Paneitz-Branson
Un problema de interés en geometría Riemanniana consiste en comprender cómo se comportan los invariantes geométricos bajo transformaciones conformes de la métrica. Generalmente este tipo de problemas implica el estudio de una ecuación diferencial sobre una variedad. El caso modelo lo encontramos en la curvatura escalar, pues estudiar las deformaciones conformes de este invariante conduce a la ecuación de Yamabe. El análogo de orden superior corresponde a la Q-curvatura. En este caso la ecuación diferencial que gobierna los cambios conformes es la ecuación de Paneitz-Branson. En esta charla revisaremos la existencia de múltiples métricas conformes de Q-curvatura constante en producto de esferas.
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Comentarios
Publicar un comentario