Sesión 432 (Valores propios en geometría conforme)
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Mayo 5 de 2025 (Sesión 432)
Valores propios en geometría conforme.
Es bien conocido como el uso de valores propios de matrices han jugado un role importante en soluciones de problemas en Álgebra lineal. En un contexto infinito dimensional otro uso corresponde a relacionar el comportamiento de los valores propios de un operador diferencial con invariantes geométricos. Por ejemplo, André Lichnerowicz exploró como el primer valor propio del Laplaciano de una variedad cerrada está relacionado con su curvatura de Ricci.
En esta charla haremos un recorrido sobre la geometría que generan los valores propios del Laplaciano y el operador de Dirac. Si el tiempo lo permite discutiremos una caracterización reciente de los primeros valores propios del Laplaciano conforme y el operador de Dirac en una clase conforme fija.
Expositor: Jurgen Julio.- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Comentarios
Publicar un comentario