Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 361 (Reconstrucción de coloraciones a partir de sus conjuntos homogéneos.)

Diciembre 5 de 2022 (Sesión 361)

Reconstrucción de coloraciones a partir de sus conjuntos homogéneos

Sea φ una coloración en dos colores de parejas de elementos de un conjunto X numerable. Esto es, una partición de X^[2] en dos partes. En [1], se define el problema de reconstrucción de coloraciones a partir de subconjuntos homogéneos. Este trabajo es una continuación de lo que se presenta en dicho artículo y respondemos a un par de preguntas formuladas allí. 

En primer lugar, se definen las coloraciones fuertemente reconstruibles y se demuestra que son una clase propia de las coloraciones reconstruibles. En segundo lugar, pero mucho más interesante está el contenido del capítulo 4 de este trabajo. Este capítulo está dedicado al estudio de la función definida en [1], 

r(φ) = {|A| ∶ A ≠ ∅, A induce una reconstrucción de φ}, 

la cual toma valores en N o א0. Si X es infinito, los únicos valores que puede tomar r(φ) son 1,4 y א0. La demostración de este teorema es el contenido principal de este trabajo de grado. Se establecen primero varios resultados preliminares donde se destaca el teorema que afirma que si φ: X^[2] → 2 es y X es infinito entonces si A contiene tres aristas formando un triángulo ({a, b},{b, c},{a, c} ∈ A) entonces |A| = א0. 

Bajo las condiciones del teorema principal, las coloraciones tales que r(φ) = 1 y r(φ) = 4, deben corresponder con las coloraciones que poseen ciertas subestructuras conocidas pares críticos y ciclos críticos, respectivamente.

Expositor: Diego Gamboa.

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)