Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 365 (Los hiperespacios de subcontinuos regulares y subcontinuos magros)

Enero 30 de 2023 (Sesión 365)

Los hiperespacios de subcontinuos regulares y subcontinuos magros

Dado un continuo X, denotamos por C(X) al hiperespacio formado por los subcontinuos de X junto con la métrica de Hausdorff. En ``The hyperspace of regular subcontinua'' y ``The hyperspace of meager subcontinua", el profesor Norberto Ordóñez define los siguientes subespacios de C(X). 

D(X)=\{K\in C(X) : \overline{K^{\circ}}=K\} y M(X)=\{K\in C(X) : K^{\circ}=\emptyset\}; 

llamados respectivamente hiperespacio de subcontinuos regulare e hiperespacio de subcontinuos magros. 

Presentaremos algunos resultado obtenidos en las referencias acerca de la conexidad, compacidad y densidad de estos hiperespacios. Mostraremos también resultados originales de nuestro trabajo de grado, que tienen que ver con la complejidad boreliana de D(X), la contractibilidad de M(X) y algunas respuestas parciales al siguiente problema: 

Caracterizar los espacios métrios S para los cuales existe un continuo X, tal que D(X) es homeomorfo a S. 

Así mismo, plantearemos preguntas abiertas relacionadas con D(X) y M(X).

Referencias:

Ordoñez, N. ``The hyperspace of regular subcontinua". Topology Appl. 234 (2018), 415-427. Ordoñez, N. ``The hyperspace of meager subcontinua". Houst. J. Math. 46 (2020), No. 3, 821-834.

Expositor: Diego Alexander Ramirez Angarita

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)