Octubre 30 de 2023 (Sesión 389)
Representación de subsemigrupos de semigrupos polacos
Un semigrupo es un conjunto $S$ con una operación asociativa *. Además, decimos que un semigrupo es semigrupo inverso cuando cada elemento tiene un único inverso. Cuando en el semigrupo se define una topología que hace a la operación algebraica continua se dice que el semigrupo es topológico. Dos ejemplos importantes de semigrupos son $X^X$, que consiste de todas las funciones de $X$ en sí mismo, y el semigrupo inverso simétrico $I(X)$ cuyos elementos son todas las biyecciones parciales entre subconjuntos de $X$ donde la operación en cada uno de ellos es la composición. Para el caso $X=\mathbb N$, ambos semigrupos admiten una topología que los hace semigrupos polacos (es decir, una topología métrica, completa y separable que hace a la operación continua). En esta charla hablaremos de ciertos resultados dados recientemente en (Elliott et al., 2023) que dan nociones sobre la representación de algunos subsemigrupos de $\mathbb N^\mathbb N$ e $I(N)$.
Expositora: Natali Delgado
Comentarios
Publicar un comentario