Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 420 (Curvas que llenan el espacio)

Noviembre 18 de 2024 (Sesión 420)

Curvas que llenan el espacio.

En 1878, Georg Cantor demostró la existencia de una biyección entre el intervalo $[0,1]$ y el cuadrado unitario $[0,1]^2$. Este resultado sorprendió a los matemáticos de la época, ya que desafiaba la intuición geométrica de que un intervalo unidimensional y una región bidimensional no podían tener la misma ``cantidad’’ de puntos. A raíz de esta demostración, surgió el interés en investigar las propiedades de continuidad de tales funciones, concluyéndose que una biyección entre $[0,1]$ y $[0,1]^2$ no puede ser continua.

La cuestión de si era posible una función continua y sobreyectiva de $[0,1]$ en $[0,1]^2$ motivó posteriores investigaciones. En 1890, Giuseppe Peano publicó la primera construcción de una función continua y sobreyectiva de $[0,1]$ sobre el cuadrado unitario, hoy conocida como la curva de Peano. Posteriormente, David Hilbert desarrolló la conocida curva de Hilbert, la cual sirvió como ejemplo para la construcción de posteriores curvas que llenan el espacio, debido a lo intuitiva que resultaba su construcción iterativa.

En esta exposición, se presentará una función continua y sobreyectiva de $[0,1]$ en $[0,1]^2$, definida a partir de una serie infinita, tomada del libro Mathematical Analysis de Tom M. Apostol. Además, se mostrará un código que grafica las aproximaciones de esta función mediante sumas finitas.

Expositor: Camilo Andrés Acevedo Ardila.
Universidad Industrial de Santander.
Escuela de Matemáticas.

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)