Sesión 440 (Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos)

Agosto 11 de 2025 (Sesión 440) Sobre la complejidad de la relación de conjugación topológica en sistemas dinámicos. Un sistema dinámico es un par $(X,f)$ donde $X$ (llamado espacio de fase) es un espacio métrico compacto y $f: X \to X$ continua. Decimos que dos sistemas dinámicos $(X,f)$ y $(X,g)$ son (topológicamente) conjugados, si existe un homeomorfismo $\varphi$, tal que $\varphi circ f = g \circ \varphi$. La conjugación topológica genera una relación de equivalencia sobre $C(X,X)$, el espacio de las funciones continuas de $X$ en si mismo. Preguntas naturales que surgen acerca de esta relación están: ¿Cuántas clases de equivalencia existen? ¿La relación de conjugación, vista como subconjunto de $C(X,X)^2$, es boreliana? La Teoría Descriptiva de Conjuntos proporciona herramientas para estudiar y clasificar relaciones de equivalencia definidas sobre espacios polacos (espacios completamente metrizable y segundo numerables). La noción central en esta clasificación es ...

Sesión 433 (Sobre representaciones de espacios CTS)

Mayo 12 de 2025 (Sesión 433)

Sobre representaciones de espacios CTS

Decimos que un espacio topológico X es CTS si es compacto, T₁ y segundo numerable. Recientemente se han estudiado métodos para representar espacios CTS a través de estructuras de carácter combinatorio ([1], [2], [3]) los cuales estudiaremos en esta charla.

En la primera de ellas, M. Morayne y C. Ryll-Nardzewski introdujeron un espacio CTS, denotado por 𝒢^max(ℱ), asociado a cada familia hereditaria ℱ de subconjuntos finitos de ℕ, y mostraron que todo espacio CTS es homeomorfo a uno de esos espacios 𝒢^max(ℱ). Ese resultado les permitió demostrar que todo CTS admite una extensión polaca que preserva borelianos.

La segunda, presentada por Adam Bartoš, Tristan Bice y Alejandro Vignatti, trabaja con conjuntos parcialmente ordenados, y demuestra que todo CTS es homeomorfo al espectro de un poset. Más aún, desarrollan un método para construir espacios topológicos a partir de posets contables que puede ser aplicado a todos los CTS.

Referencias:

[1] M. Morayne, C. Ryll-Nardzewski. (1994). Refinements of T1, compact and second countable topologies, Topology and its Applications. 56 159–164. https://doi.org/10.1016/0166-8641(94)90016-7

[2] Bartoš, A., Bice, T., & Vignati, A. (2025). Constructing compacta from posets. Publ. Mat., 69(1), 217–265. https://doi.org/10.5565/PUBLMAT6912510

[3] Mummert, C., & Stephan, F. (2010). Topological aspects of poset spaces. Michigan Mathematical Journal, 59(1), 3–24. https://doi.org/10.1307/mmj/1272376025

Expositor: Jeison Amorocho.
Universidad Industrial de Santander.
Escuela de Matemáticas.

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 418 (Teorema de Mycielski y algo más)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)