Sesión 453 (C-representación de ideales en espacios de Banach)

Febrero 23 de 2026 (Sesión 453) C-representación de ideales en espacios de Banach. Un ideal es un sobconjunto de P(N) que describe la propiedad de ser pequeño. En 1999, Solecki caracterizó los P-ideales analíticos a través de submedidas semicontinuas inferiormente.  Análogamente, ciertos ideales pueden ser representados en espacios de Banach. Mostraremos su caracterización dada por Borodulin, el ejemplo para Z  (el ideal de densidad 0) y un ideal que no es representable. Por último, veremos la representación de ideales específicamente en c0. Expositor: Julian Neira Universidad Industrial de Santander

Sesión 433 (Sobre representaciones de espacios CTS)

Mayo 12 de 2025 (Sesión 433)

Sobre representaciones de espacios CTS

Decimos que un espacio topológico X es CTS si es compacto, T₁ y segundo numerable. Recientemente se han estudiado métodos para representar espacios CTS a través de estructuras de carácter combinatorio ([1], [2], [3]) los cuales estudiaremos en esta charla.

En la primera de ellas, M. Morayne y C. Ryll-Nardzewski introdujeron un espacio CTS, denotado por 𝒢^max(ℱ), asociado a cada familia hereditaria ℱ de subconjuntos finitos de ℕ, y mostraron que todo espacio CTS es homeomorfo a uno de esos espacios 𝒢^max(ℱ). Ese resultado les permitió demostrar que todo CTS admite una extensión polaca que preserva borelianos.

La segunda, presentada por Adam Bartoš, Tristan Bice y Alejandro Vignatti, trabaja con conjuntos parcialmente ordenados, y demuestra que todo CTS es homeomorfo al espectro de un poset. Más aún, desarrollan un método para construir espacios topológicos a partir de posets contables que puede ser aplicado a todos los CTS.

Referencias:

[1] M. Morayne, C. Ryll-Nardzewski. (1994). Refinements of T1, compact and second countable topologies, Topology and its Applications. 56 159–164. https://doi.org/10.1016/0166-8641(94)90016-7

[2] Bartoš, A., Bice, T., & Vignati, A. (2025). Constructing compacta from posets. Publ. Mat., 69(1), 217–265. https://doi.org/10.5565/PUBLMAT6912510

[3] Mummert, C., & Stephan, F. (2010). Topological aspects of poset spaces. Michigan Mathematical Journal, 59(1), 3–24. https://doi.org/10.1307/mmj/1272376025

Expositor: Jeison Amorocho.
Universidad Industrial de Santander.
Escuela de Matemáticas.

Comentarios

Entradas populares de este blog

Sesión 423 (Sobre suavidad)

Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)

Sesión 441 (Bicategorías de Tangles y la Cohomología de Khovanov)