Septiembre 8 de 2025 (Sesión 443) Espacios CTS y la propiedad fuerte de Choquet. Decimos que un espacio topológico $X$ es \textit{CTS} si es compacto, $T_1$ y segundo numerable. En esta charla estudiaremos la relación entre los espacios \textit{CTS} y la propiedad fuerte de Choquet, lo cual permite analizar su representación mediante espacios posets. En particular, Mummert y Stephan (2010) demostraron que un espacio $X$ es homeomorfo a un espacio \textit{MF} de base numerable si y solo si es segundo numerable, $T_1$ y posee la propiedad fuerte de Choquet. Por otra parte, Morayne y Rałowski (2023) caracterizaron a los \textit{CTS} que son espacios de Baire. Inicialmente pensábamos que todo \textit{CTS} Baire tendría la propiedad fuerte de Choquet; sin embargo, mostramos que un \textit{CTS} es de Baire si y solo si es de Choquet. Además, construimos un ejemplo de un espacio de Baire que no posee la propiedad fuerte de Choquet. En este seminario discutirem...
Sesión 442 (Isometrías en espacios de sucesiones)
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Septiembre 1 de 2025 (Sesión 442)
Isometrías en espacios de sucesiones.
Los espacios de Banach de sucesiones son espacios cuyos elementos pueden representarse mediante sucesiones de escalares utilizando un sistema de coordenadas dado por una base de Schauder. Denotamos por Isom(X) el grupo de isometrías sobreyectivas de X.
En este seminario, analizaremos la caracterización del grupo Isom(X) para algunos espacios de Banach de sucesiones, presentando importantes resultados históricos del análisis funcional para espacios clásicos y comentando resultados recientes en la literatura.
Expositor: Victor dos Santos Ronchim
Universidad Estadual Paulista.
- Obtener enlace
- X
- Correo electrónico
- Otras aplicaciones
Entradas populares de este blog
Sesión 423 (Sobre suavidad)
Diciembre 9 de 2024 (Sesión 423) Sobre Suavidad. ¿Cuál es la naturaleza de la clasificación de objetos en matemáticas? En esta sesión estudiaremos relaciones de equivalencia en espacios polacos y definiremos en nuestro contexto lo que significa que un problema de clasificación sea más “fácil” que otro, además de precisar lo que significa “clasificar”. Finalmente, charlaremos acerca de algunos teoremas famosos de dicotomía relacionados. Bibliografía: Tserunyan, A. (2024). Lecture notes on descriptive set theory. Recuperado de https://www.math.mcgill.ca/atserunyan/expository.html GAO, S. (2009). INVARIANT DESCRIPTIVE SET THEORY. CRC Press. Di Prisco, C. A., & Uzcátegui Aylwin, C. E. (2020). Una introducción a la teoría descriptiva de conjuntos (1st ed.). Universidad de los Andes. Expositor: Jeison Amorocho. Universidad Industrial de Santander. Escuela de Matemáticas.
Sesión 418 (Teorema de Mycielski y algo más)
Octubre 21 de 2024 (Sesión 418) Teorema de Mycielski y algo más. Un espacio Polaco $X$ es un espacio completamente metrizable y separable. Un subconjunto $A$ de $X$, tiene \textit{la propiedad del conjunto perfecto}, si existe $B \subseteq A$ perfecto (esto es, $B$ no tiene puntos aislados). En la primera parte de esta sesión, se presentarán algunos aspectos históricos de la estrategia de Cantor para demostrar \textit{la hipótesis del continuo}, usando conjuntos que poseen la propiedad del conjunto perfecto. En la segunda parte, se introducirán las relaciones de equivalencia sobre espacios Polacos y como clasificarlas. Además, discutiremos el Teorema de Mycielski, que proporciona condiciones suficientes para que $|X/E| = |\mathbb{R}|$, donde $E$ es una relación de equivalencia que cumple ciertas condiciones. Expositor: Jhon Freddy Pérez. Universidad Industrial de Santander. Escuela de Matemáticas.
Sesión 439 (Propiedad de Schur, secuencialidad débilmente completa y reflexividad)
Agosto 4 de 2025 (Sesión 439) Propiedad de Schur, secuencialidad débilmente completa y reflexividad. En el año 1921 el matemático Ruso Issai Schur (1875-1941) definió la propiedad de Schur. Un espacio de Banach tiene la propiedad de Schur si la convergencia en la topología débil y en la topología fuerte son equivalentes. Los conceptos de reflexividad y secuencialidad débilmente completa en espacios de Banach, fueron estudiados contemporáneamente por varios matemáticos, entre los cuales se destacan: Rosenthal, Eberlein, Smulian, Robert James, entre otros. En esta charla analizaremos la relación existente entre estos tres conceptos, mostrando que implicaciones se tienen y cuales no se tienen. Bibliografía J. Diestel. Sequences and Series in Banach Spaces. Springer, NewYork, 1984. 2. J. Lindenstrauss, L. Tzafriri. Classical Banach Spaces I and II. Springer, New York, 1996. Expositor: Sergio Andrés Pérez León. Universidad Industrial de Santander. Escue...
Comentarios
Publicar un comentario